A checklist of Egyptian fungi: II. Glomeromycota

Nafady NA1*, Abdel-Azeem AM2 and Salem FM2

1Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt-niviennafady@aun.edu.eg
2Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt-ahmed_abdelazeem@science.suez.edu.eg, fatmasalem@rocketmail.com

Abstract
Information about arbuscular mycorrhizal fungi (AMF) was abstracted based on an intensive search of publications, thesis, and preliminary annotated checklists and compilations. By screening all available sources of information, it was possible to report forty-eight taxa belonging to one class (Glomeromycetes), four orders (Archaeosporales, Diversisporales, Glomerales and Paraglomerales) and six families (Acaulosporaceae, Archaeosporaceae, Entrophosporaceae, Gigasporaceae, Glomeraceae and Pacisporaceae). Order Glomerales accommodates the greatest range of species (28 species), the order Archaeosporales and Paraglomerales accommodate the lowest range (one species each).

Key words – AM fungi – checklist – Egypt – Glomus – mycorrhiza – Saint Katherine

Introduction
The arbuscular mycorrhizal (AM) symbiosis is the most widespread on earth and is defined as the association between the fungi of the phylum Glomeromycota (Schüßler et al. 2001) and most of the terrestrial species ranging from thallophytes to Angiosperms. The morphology of the fungus colonizing plant root tissues is highly elaborated in AM symbiosis. In natural communities, approximately 80% of higher plants were obligately dependent upon fungal associates. AM fungi are believed to be disseminated intercontinentally prior to continental drift, as supported by fossil records of earlier plants (Berch 1986; Stubblefield et al. 1987; Remy et al. 1994).

Molecular data used by Schüßler et al. (2001) to establish the relationships among arbuscular mycorrhizal fungi and between arbuscular mycorrhizal fungi and other fungi. The group of arbuscular mycorrhizal fungi was elevated to the level of phylum Glomeromycota, which was shown to be as distinct from other fungi as the Ascomycota or from the Basidiomycota.

Eight genera include approximately 150 species of arbuscular mycorrhizal fungi have been recognized based mainly on morphological characteristics of asexual spores, although molecular methods and various biochemical parameters are now being used in systematic studies (Schüßler & Walker 2010).

In Egypt, the pioneering work of Mostafa (1938) and Sabet (1939, 1940, 1945) is now accepted as the starting point of research on Egyptian Glomeromycota. These studies were followed by many other investigations concerned mainly with the ecology and physiology of...
endomycorrhizas in Egypt. However, taxonomic studies on Egyptian Glomeromycota are limited, and had never been the sole target of any study until Fares (1986) conducted a survey of AM, followed by Agwa (1990) and Nafady (2011) on mycorrhizas and nodulation in some Egyptian plants.

Checklists are important tools in biodiversity, taxonomy, systematics and conservation (Söderström et al. 2007, 2008; Abdel-Azeem and Salem 2013). In spite of that, several important areas lack recent checklists, including Egypt. For Egypt, only very few comprehensive assessments of local fungi have been published (e.g. El-Abyad and Abu-Taleb 1993; El-Abyad 1997; Abdel-Azeem 2010; Moustafa & Abdel-Azeem 2011; Abdel-Azeem and Salem 2013).

Values of relative species richness of different systematic and ecological groups in Egypt compared to values of the same groups worldwide, show that our knowledge of Egyptian Glomeromycota is fragmentary very rare and limited because may be Egyptian mycologists are not interested to study the taxonomy of Glomeromycota and this group overlooked during their studies (Abdel-Azeem 2010).

Following a recent publication on the assessment of total fungi in Egypt (Abdel-Azeem 2010, Abdel-Azeem and Salem 2013), this paper continues to close the gaps in knowledge on the fungal diversity of Egypt by providing a comprehensive checklist of Glomeromycotan fungi.

Materials and methods

Egypt is located in the extreme Northeast of Africa. The desert covers more than 90 percent of Egypt and can be divided into 4 major regions: The Nile Valley and Delta, Western Desert, Eastern Desert and Sinai Peninsula (Zahran and Willis 2009). The Nile River flows north through Egypt and into the Mediterranean Sea. The country has no effective rainfall except in a narrow band along the northern coast. Consequently, Egypt has only one main source of water supply, the Nile. The climate in Egypt is generally moderate; it is mostly hot or warm during the day, and cool at night. In the coastal regions, daytime average temperatures range between a minimum 14°C in winter and maximum 30°C in summer. In deserts the temperatures vary considerably, especially in summer; when they may range from 7°C at night, to 52°C during the day (Zahran and Willis 2009).

This study has undergone to report the most arbuscular mycorrhizal fungi in Egypt. So, this checklist has been compiled based on an intensive search of literatures and thesis. Nomenclature and authors names are according to the Schüßler’s (http://www.amf-phylogeny.com/) and Blaszkowski’ websites (http://www.zor.zut.edu.pl/Glomeromycota/index.html) which reports a continually updated listing of species, genera, families, and orders in the phylum.

Data Collection

Results

Forty-eight species of arbuscular mycorrhizal fungi including 12 genera, 6 families, 4 orders and 1 class are reported in this list of which AM fungi isolated from different localities in Egypt (Table 1).
Table 1: Taxonomic ranks of Egyptian Glomeromycota

<table>
<thead>
<tr>
<th>Orders</th>
<th>Families</th>
<th>Genera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glomerales</td>
<td>Glomeraceae</td>
<td>Dominikia (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Funneliformis (7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glomus (14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhizophagus (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sclerocystis (2)</td>
</tr>
<tr>
<td>Diversisporales</td>
<td>Gigasporaceae</td>
<td>Gigaspora (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scutellospora (5)</td>
</tr>
<tr>
<td></td>
<td>Acaulosporaceae</td>
<td>Acaulospora (8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entrophospora (1)</td>
</tr>
<tr>
<td>Paraglomerales</td>
<td>Paraglomeraceae</td>
<td>Paraglomus (1)</td>
</tr>
<tr>
<td>Archaeosporales</td>
<td>Archaeosporaceae</td>
<td>Archaeospora (1)</td>
</tr>
</tbody>
</table>

Checklist of Glomeromycotan fungi reported in Egypt
The genera and species are given in alphabetical order, with information on the area of Egypt where these former were reported.

Kingdom: Fungi
Phylum: Glomeromycota
Class: Glomeromycetes
Order 1: Glomerales
Family 1: Glomeraceae (Figure 1)

1. *Dominikia duoreactiva* Błaszk., Goralska & Chwat,

2. *Funneliformis africanum* (Błaszk. & Kovács) C. Walker & A. Schüßler
 Synonym: *Glomus africanum* Błaszk. & Kovács
 Reported from sand dunes of Giftung Island by Błaszkowski *et al.* (2010).

3. *Funneliformis caledonium* (Nicolson & Gerd.) Walker & Schüßler
 Synonym: *Glomus caledonium* (Nicolson & Gerd.) Trappe & Gerd.
 Reported from three deltalic Governorates by Mankarios and Abdel-Fattah (1994).

4. *Funneliformis coronatum* (Giovann.) C. Walker & Schuessler
 Synonym: *Glomus coronatum* Giovann.

5. *Funneliformis geosporum* (Nicolson & Gerd.) Walker & Schuessler
 Synonym: *Glomus geosporum* (Nicol. & Gerd.) Walker
 Reported from desert soil of Wadi Al-Assuity Protected area and reclaimed soil of Al-Ghoryb at Assiut Governorate by Nafady (2011).

6. *Funneliformis mosseae* (Nicolson & Gerd.) Walker & Schübler
 Synonym: *Glomus mosseae* (Nicol. & Gerd.) Gerdl. & Trappe

7. *Funeliformis verruculosum* (Błaszk.) Walker & Schüßler
Synonym: *Glomus verruculosum* Błaszk.
Reported from desert soil at North Sinai by Mansour (2010).

8. *Funeliformis xanthium* (Błaszk., Blanke, Renker & Buscot) C. Walker & Schuessler
Synonym: *Glomus xanthium* Błaszk., Blanke, Renker & Buscot
Reported from cultivated soil of Al-Wasta at Assiut Governorate by Nafady (2011).

Reported from desert soil of Wadi Al-Assiuty Protected area at Assiut Governorate by Nafady (2011).

10. *Glomus antarcticum* Cabello
Reported from cultivated soil of Al-Wasta at Assiut Governorate by Nafady (2011).

11. *Glomus caesaris* Sieverd. & Oehl
Reported from cultivated soil of Al-Wasta at Assiut Governorate by Nafady (2011).

12. *Glomus constrictum* Trappe
Reported from desert soil of Wadi Al-Assiuty Protected area and reclaimed soil of Al-Ghoryb at Assiut Governorate by Nafady (2011).

13. *Glomus diaphanum* Morton & Walker
Reported from Ismailia Governorate by Sabet et al. (2013).

14. *Glomus etunicatum* Becker & Gerd
Reported from cultivated soil, Bahr El-Baqar at Port Said Governorate by Abdel-Azeem et al. (2007) and at Ismailia Governorate by Baraka et al. (2012).

15. *Glomus fuegianum* (Speg.) Trappe & Gerd.
Reported from cultivated soil of Al-Wasta at Assiut Governorate by Nafady (2011).

16. *Glomus invermaium* Hall
Reported from Saint Katherine protected area by Abdel-Moneim and Abdel-Azeem (2009) and from Ismailia Governorate by Baraka et al. (2012).

17. *Glomus lamellosum* Dalpé, Koske & Tews
Reported from reclaimed soil of Al-Ghoryb at Assiut Governorate by Nafady (2011).

18. *Glomus monosporum* Gerd. & Trappe
Reported from three deltaic Governorates by Mankarios and Abdel-Fattah (1994) and cultivated soil at Dakhlia Governorate by Abdel-Fattah (2001).

20. *Glomus trimurales* Koske & Halvorson
Reported from cultivated soil of Al-Wasta and reclaimed soil of Al-Ghoryb at Assiut Governorate by Nafady (2011).

21. *Glomus versiforme* (Karsten) Berch
Reported from cultivated soil of Al-Wasta and reclaimed soil of Al-Ghoryb at Assiut Governorate by Nafady (2011).

22. *Glomus viscosum* Nicolson
Reported from Ismailia Governorrate by Baraka *et al.* 2012.

Synonym: *Glomus clarum* Nicolson & Schenck

24. *Rhizophagus fasciculatus* (Thaxt.) Walker & Schüßler
Synonym: *Glomus fasciculatum* Thaxt.

25. *Rhizophagus intraradices* (Schenck & Sm.) Walker & Schüßler
Synonym: *Glomus intraradices* Schenck & Sm.

Synonym: *Glomus irregulare*
Reported from sand dunes of Giftung Island by Blaszkowski *et al.* (2008).

27. *Sclerocystis clavispora* Trappe
Synonym: *Glomus clavisporum* Almeida & N.C. Schenck
Reported from Saint Katherine protected area by Abdel-Moneim and Abdel-Azeem (2009).

28. *Sclerocystis sinuosa* Gerd. & Bakshi
Synonym: *Glomus sinuosum* (Gerd. & Bakshi) Almeida & Schenck
Reported from cultivated soil, Bahr El-Baqar cultivated area at Port Said Governorate by Abdel-Azeem *et al.* (2007).

Order 2: Diversisporales
Family 2: Gigasporaceae

29. *Gigaspora gigantean* (Nicol. & Gerd.) Gerd. & Trappe
Basionym: *Endogone gigantea* Nicolson & Gerd.
Reported from cultivated soil of Al-Wasta at Assiut Governorate by Nafady (2011).
Fig. 1- Mature spores of *Funneliformis geosporum* (A), *Glomus constrictum* (B), *Funneliformis mosseae* (C) and *Rhizophagus clarus* (D).

30. *Gigaspora margarita* Becker & Hall

Synonym: *Cetraspora armeniaca* Oehl, Souza & Sieverd.
Reported from cultivated soil of Al-Wasta at Assiut Governorate by Nafady (2011).

32. *Scutellospora calospora* (Nicolson & Gerd.)Walker & Sanders
Synonym: *Gigaspora calospora* Nicolson & Gerd.
Reported from cultivated soil of Al-Wasta at Assiut Governorate by Nafady (2011).
33. *Scutellospora fulgida* Koske & Walker
Reported from cultivated soil of Al-Wasta at Assiut Governorate by Nafady (2011).

34. *Scutellospora persica* (Koske & Walker) Walker & Sanders
Reported from reclaimed soil of Al-Ghoryb at Assiut Governorate by Nafady (2011).

35. *Scutellospora reticulate* (Koske, Mill. & Walker) Walker & Sanders
Reported from cultivated soil of Al-Wasta at Assiut Governorate by Nafady (2011).

Family 3: Acaulosporaceae (Figure 2)

36. *Acaulospora laevis* Gerd. & Trappe

37. *Acaulospora bireticulata* Rothwell & Trappe
Reported from desert soil of Wadi Al-Assuity Protected area at Assiut Governorate by Nafady (2011).

38. *Acaulospora capsicula* Blaszk.
Reported from reclaimed soil of Al-Ghoryb and desert soil of Wadi Al-Assuity Protected area at Assiut Governorate by Nafady (2011).

Reported from reclaimed soil of Al-Ghoryb at Assiut Governorate by Nafady (2011).

40. *Acaulospora rehmii* Sieverd. & Toro
Reported from cultivated soil of Al-Wasta at Assiut Governorate by Nafady (2011).

41. *Acaulospora splendid* Sieverd., Chaverri & Rojas
Reported from reclaimed soil of Al-Ghoryb and cultivated soil of Al-Wasta at Assiut Governorate by Nafady (2011).

42. *Acaulospora thomii* Blaszk.
Reported from reclaimed soil of Al-Ghoryb and cultivated soil of Al-Wasta at Assiut Governorate by Nafady (2011).

43. *Acaulospora tuberculata* Janos & Trappe
Reported from cultivated soil of Al-Wasta, reclaimed soil of Al-Ghoryb and desert soil of Wadi Al-Assuity Protected area at Assiut Governorate by Nafady (2011).

Reported from cultivated soil of Al-Wasta and reclaimed soil of Al-Ghoryb at Assiut Governorate by Nafady (2011).

Family 4: Pacisporaceae

45. *Pacispora boliviana* Sieverd. & Oehl
Reported from cultivated soil of Al-Wasta at Assiut Governorate by Nafady (2011).

46. *Pacispora franciscana* Sieverd. & Oehl
Reported from cultivated soil of Al-Wasta and reclaimed soil of Al-Ghoryb at Assiut Governorate by Nafady (2011).
Fig. 2- Mature spores of *Acaulospora capsicula* (A), *Acaulospora tuberculata* (B), *Acaulospora bireticulata* (C) and *Entrophospora infrequens* (D).

Order 3: Paraglomerales

Family 5: Paraglomeraceae

Order 4 : Archaeosporales

Family 6: Archaeosporaceae

References

