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ABSTRACT 

In the current study, zinc oxide nanoparticles (ZnONPs) were successfully 

mycosynthesized using Rhizopus arrhizus NWMA1 and formulated into 

carboxymethyl cellulose (CMC) and starch (ST) as nanocomposite 

(CMC/St@ZnONPs). The ZnONPs anf formulated CMC/ST@ZnONPs were 

characterized physiochemically and topographically as well.  ZnONPs UV-

visible spectrum presented a peak at 270 nm. Additionally, the Fourier 

transform infrared (FTIR) of CMC/ST@ZnONPs emphasized the formulation. 

Moreover, X- ray diffraction (XRD) diffraction of ZnONPs and 

CMC/ST@ZnONPs were presented in the crystal plane of ZnONPs that 

decreased after formulation according to the effect of biopolymers. The 

topographical analysis including transmission electron microscopy (TEM), 

selected area electronic diffraction (SAED), scanning electron microscopy 

(SEM) and energy dispersive X-ray (EDX) affirmed the formulation of 

ZnONPs and incorporation of ZnONPs into CMC/ST@ZnONPs.  The 

prepared compounds were assessed for antimicrobial activity toward multi-

drug resistant bacterial and fungal isolates as well as for anticancer activity 

toward MCF7 cancerous cell line. Antimicrobial results revealed that 

CMC/St@ZnONPs nanocomposite showed activity higher than ZnONPs 

where inhibition zones were 40, 25, 43, 17, 25, 25, 25 and 45 mm against K. 

pneumonia 124, K. pneumonia 117, B. subtilis, K. pneumonia 115, 

Acenetobacter bumanii 110, Pseudomonas aerogenosa, E. coli 127, C. 

albicans. Furthermore, ZnONPs exhibited anticancer activity higher than 

CMC/St@ZnONPs nanocomposite toward MCF7 cells where IC50 was 61.22 

± 1.09, and 84.47 ± 2.48µg mL–1 respectively. In conclusion, this study 

succeeded in the mycosynthesis of ZnONPs and CMC/St@ZnONPs 

nanocomposite which had promising antimicrobial and anticancer activity. 
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Introduction 

The rise of multidrug-resistant (MDR) microbes presents 

significant risks to public health, leading to increased 

morbidity and mortality rates. Infections caused by these 

resistant strains often result in prolonged hospital stays, 

higher medical costs, and the necessity for more 

intensive care (Kumar et al. 2024). Patients undergoing 

surgeries, cancer treatments, or organ transplants are 

particularly vulnerable, as they rely heavily on effective 

antibiotics to prevent and treat infections. The inability 

to treat common infections effectively can lead to 

complications that may ultimately result in death, 

creating a pressing need for new therapeutic options 

(Hocking et al. 2021). Moreover, the spread of MDR 

microbes poses a broader risk to healthcare systems and 

society at large. Outbreaks of resistant infections can 

overwhelm healthcare facilities, leading to resource 

scarcity and increased strain on healthcare professionals 

(Salam et al. 2023). Additionally, the economic burden 

extends beyond individual patients to entire communities 

and countries, as the costs associated with treatment, 

hospitalization, and lost productivity can be substantial. 

Public health efforts are further challenged by the global 

nature of drug resistance, as resistant strains can easily 

spread across borders, necessitating coordinated 

international responses to effectively address this 

growing crisis (Muteeb & Rehman 2023). 

Cancer poses significant risks not only to individual 

patients but also to public health systems and society as a 

whole. The disease can lead to severe physical, emotional, 

and financial burdens for patients and their families 

(Więckiewicz et al. 2024). The prognosis for cancer can 

vary widely depending on the type and stage at diagnosis, 

with some cancers being highly treatable while others 

remain difficult to manage. Late-stage diagnoses often 

result in more aggressive treatments, which can be 

physically taxing and may lead to long-term health 

complications (Neal et al. 2015). On a broader scale, the 

prevalence of cancer contributes to significant economic 

challenges, including high healthcare costs and lost 

productivity (Cong et al. 2022). Cancer treatment often 

requires extensive resources, including surgeries, 

chemotherapy, radiation, and ongoing follow-up care, 

leading to substantial financial strain on healthcare 

systems. Moreover, as the population ages and lifestyle 

factors such as smoking, poor diet, and lack of exercise 

contribute to rising cancer rates, the burden on public 

health initiatives grows (Smith et al. 2019). This 

necessitates concerted efforts in prevention, early 

detection, and treatment strategies to mitigate the risks 

associated with cancer and improve outcomes for affected 

individuals and communities.  

Over the last decade, nanotechnology has emerged as a 

technology that has revolutionized every field of applied 

science. The field of nanoparticles (NPs) is one of the 

avenues to nanotechnology that is associated with 

nanoscale materials with very small particles size ranging 

from 1 to 100 nm. In this regard, NPs have been integrated 

into various industries by providing innovative solutions 

(Saied et al. 2022, El-Khawaga et al. 2023). Therefore, it 

can be incorporated into various applications such as 

textiles, wastewater treatment, paper preservation, the 

food industry, cosmetics and pharmaceuticals, optics, and 

smart devices (Albalawi et al. 2022, Hashem et al. 2023a, 

Hashem & El-Sayyad 2024).  Biological synthesis or 

green synthesis has been described as cost-effectiveness, 

biocompatible, eco-friendly nature, and scalable, avoiding 

harsh conditions and not utilizing hazardous chemicals. 

Various biological entities such as bacteria, fungi, yeast, 

actinomycetes, and plant extracts are utilized in the green 

synthesis of different metal and metal oxide nanoparticles, 

such as Ag, Cu, CuO, ZnO, TiO2, Se, and Fe2O3 (Abdel-

Azeem et al. 2020; Srivastava et al. 2021; Al-Askar et al. 

2023, Hashem et al. 2023b, Saied et al. 2023, Gaber et al. 

2024). 

ZnONPs are characterized as being efficient against 

pathogenic microorganisms, mostly by their antimicrobial 

properties according to their photo-oxidizing and 

photocatalytic (Hashem et al. 2023 c, d; Elkady et al. 

2024). Recently detailed reviews introduced the 

preparation methods and antifungal properties of ZnONPs 

and their possible antifungal mechanisms for plant 

diseases management and to improve food quality (Zaki et 

al. 2021). 

Polysaccharides play a role in nanoparticle formulation 

and synthesis (Hasanin and Youssef 2022, Hasanin et al. 

2023c, Samir et al. 2024). The formulation of 

nanoparticles maintains stability and prevents particle 

aggregations (Shrestha et al. 2020).  Cellulose and its 

derivatives have unique characteristics such as 

biodegradability, compatibility and many of these 

materials are edible as well (Elsayed et al. 2022, Hasanin 

et al. 2023a).  Carboxymethyl cellulose (CMC) is a water-

soluble cellulose derivative that is editable. 

Moreover, CMC recognized for its biodegradable and 

biocompatible properties, presents several advantages that 

position it as a promising biomaterial for pharmaceutical 

and biomedical applications (Pourmadadi et al. 2023). For 

example, its advantages include affordability, non-toxicity, 

and bioavailability (Almajidi et al. 2023).  

On the other hand, starch has outstanding 

biocompatibility, complete degradability without toxic 

residues, cost-effectiveness, broad availability, and 

editable and renewable characteristics, which present 

numerous opportunities in biomedical applications, 
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including bone tissue engineering and drug delivery 

systems (Hasanin 2021, Kader et al. 2024).  

Starch is a biopolymer used as a composite with CMC 

for nanoparticle formulation and green synthesis 

sometimes (Gopinath et al. 2022). The combination of 

CMC biopolymer and ZnONPs to composite has better 

mechanical properties and chemical stability. Zinc oxide 

nanoparticles can be used as nanofillers have antimicrobial 

activity, nontoxicity, improved mechanical properties of 

nanocomposites, and a synergistic effect on antimicrobial 

properties with biopolymers (Ponco et al. 2020, Youssef et 

al. 2020). The current study aimed to: (1) myco-synthesize 

ZnONPs and CMC/St@ZnONPs composite, using an 

easy, eco-friendly, environmentally safe and costless 

approach, employing fungal metabolites from Rhizopus 

arrhizus as a reducing agent and stabilizer to synthesize 

ZnONPs. (2) Characterize the prepared ZnONPs and 

CMC/St@ZnONPs composite to confirm synthesis, 

structure, size and NPs morphology using UV-Vis 

spectroscopy and TEM, SEM-EDX, XRD, and FTIR 

analyses. (3) Assess the in vitro antimicrobial activity 

against multi-drug resistant bacterial as well as anticancer 

activity at safe concentrations. 

 

Materials and methods 

Materials  
In the current study, zinc acetate (Molecular Biology 

Grade, Merck, Kenilworth, NJ, USA). Methanol and 

sodium hydroxide (NaOH) were used as analytical grades 

and obtained from Sigma Aldrich, Cairo, Egypt. The 

potato dextrose agar medium (PDA) (Sigma–Aldrich, St., 

Louis, MO, USA). Mueller-Hinton agar medium (Oxoid, 

Cairo, Egypt). Carboxymethyl cellulose sodium salt 

(CMC)(Mw = 700,000 g/ mol, Ds = 0.9, and starch 

(Sigma-Aldrich, Cairo, Egypt). All biological reactions 

were carried out using distilled water. 

Methods 
Isolation and identification of fungal isolate  

Fungal isolate was isolated from soil sample from 

Giza Governorate by direct method where plated on malt 

extract agar (MEA) (Merck, Germany) medium plates, 

and incubated at 28±2 oC for 3-4 days. Various colonies of 

different morphologies were individually picked off and 

replicated on MEA plates and then kept at 4 oC for further 

use (Fouda et al. 2015, Hashem et al. 2019, Hasanin et al. 

2020). Morphological identification of the fungus was 

carried out by observing the morphological characteristics 

(color, texture, and appearance) and microscopic 

characteristics using light microscope (Khalil & Hashem 

2018, Khalil et al. 2019, Hashem et al. 2020a,b). DNA 

was extracted from agar cultures using Quick-DNA 

Fungal/Bacterial Microprep Kit (Zymo research; D6007) 

following the manufacturer’s protocol and supported by 

Sigma Scientific Services Company (Egypt).  PCR was 

performed by using Maxima Hot Start PCR Master Mix 

(Thermo; K1051). The primers used were Forward ITS1-F 

(5′- TCCGTAGGTGAACCTGCGG-3′) and Reverse 

ITS4-R (5′- TCCTCCGCTTATTGATATGC-3′) 

according to method used by Visagie et al. (2014). 

Synthesis of zinc oxide nanoparticles 

Biosynthesis of ZnONPs was carried out according to 

our previous work with minor modifications (Abu-Elghait 

et al. 2021). Rhizopus arrhizus NWMA1 was cultured on 

Malt extract broth (MEB) medium (Biolab, Hungary) at 

30oC, 150 rpm for 7 days. Filtration was carried out using 

Whatman filter paper No. 1 to obtain cell-free filtrate. The 

filtrate was used for ZnONPs synthesis as follows: 1 mM 

of Zinc acetate was added to cell free filtrate of R. arrhizus 

and incubated at 30oC for 24h on shaker 150 rpm.  

CMC/St@ZnONPs Preparation of  

Firstly, 2 g of CMC was dissolved in 100 mL distilled 

water, and magnetic stirred until completely dissolved.  In 

another beaker, prepare a starch solution by dissolving 1 g 

of starch in distilled water (50 mL) with constant stirring 

in a magnetic stirrer. The blended solution was obtained 

by adding CMC and starch in a 2:1 (w/w) ratio, and by 

continued stirring (10 min), 0.5 g of ZnONPs was added to 

the mixture under steering at 1500 rpm for 1 h then 

sonication to mix. Then the mix was precipitated with an 

equal volume of absolute methanol. The precipitate was 

filtrated and washed by methanol two times then washed 

with deionized water and preserved in a refrigerator to 

further investigations (Jiang et al. 2020). 

Characterizations 

UV–visible spectroscopy was carried out using UV–

visible spectrophotometer (T80 uv/visb spectrophotometer 

pg instruments ltd) absorption spectra were measured 

between 0 and 600 nm. As a blank, distilled water was 

used. X-ray diffraction (XRD) analysis was used to 

examine the structure of powder nanoparticles. Cu Kα 

radiation (λ =1.54 Å) was used in the scattering range(2θ) 

of 0–80◦ at a scan rate of 0.03S1 on a D8 Advance X-ray 

diffractometer (Bruker). As an internal standard for 

calibration, a standard silicon sample was used. Fourier 

transform infrared (FTIR) of the type Bruker VERTEX 

80v spectrometer. Transmission electron microscopy 

(TEM) micrographs were taken on a Carl Zeiss Leo 912 

AB OMEGA electron microscope at an accelerating 

voltage of 80 kV as well as the selected area electronic 

diffraction (SAED). Scanning electron microscopy (SEM) 

coupled with energy dispersive X-ray analysis; Model 

Quanta 250 FEG (Field Emission Gun) attached with EDX 

https://www.sciencedirect.com/topics/materials-science/biopolymer
https://www.sciencedirect.com/topics/materials-science/zinc-oxide-nanoparticles
https://www.sciencedirect.com/topics/materials-science/zinc-oxide-nanoparticles
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Unit (Energy Dispersive X-ray Analyses) for EDX. 

Samples were mounted on aluminum microscopy stubs 

using carbon tape, then coated with gold (Au) for 120 s 

using Quorum Techniques Ltd, sputter coater (Q150t, 

England). 

 

Test microorganisms 

Bacterial strains were provided from patient specimens 

(urine, sputum, and blood) at Sayed Galal Hospital, which 

were clinically identified by the VITEK® 2 and 

subsequently investigated for their susceptibilities to 

different 20 antibiotics discs according to agar disc 

diffusion method described by (Shawky et al. 2021). 

Additionally, Candida albicans was investigated for its 

susceptibility to the selected antibiotic list, and then the 

multidrug-resistant strains were assessed and reported. 

Antimicrobial activity 

The antimicrobial activity of ZnONPs and 

CMC/St@ZnONPs composite was assessed using the agar 

plate-diffusion method against various multi-drug resistant 

bacterial and fungal isolates. To check antimicrobial 

activity, each isolate was homogenously streaked over 

Mueller-Hinton agar (for bacterial strains) and PDA plates 

(for C. albicans) using a sterilized cotton swab. Three 

wells (0.7 cm diameter) were cut in the streaked Mueller-

Hinton plates and filled with 100 µL of biosynthesized 

ZnONPs, CMC/St@ZnONPs composite, and zinc acetate 

(1000 µg mL–1). The results were recorded as a zone of 

inhibitions (ZOIs) around each well by mm. The 

experiment was achieved in triplicate (Hasanin et al. 

2023b). 

Cytotoxic Activity of ZnONPs and 

CMC/Starch@ZnONPs toward normal and cancerous 

cell lines 

Cytotoxicity 

The cytotoxicity of ZnONPs and CMC/St@ZnONPs 

composite was determined using the MTT protocol (Van 

de Loosdrecht et al. 1994) with minor modifications. The 

normal Vero cells and Cancerous MCF7 cell lines were 

collected from American type culture collection (ATCC). 

The cell quantity and the percentage of viable cell were 

totaled by the following formula: 

Viability % =  
Test OD

Control OD
 X 100 

Inhibition % = 100 − Viability % 

Statistical analyses 

Three replicates were done, and all resulting values are 

the averages of three independent experiments. Data was 

analyzed using a one-way ANOVA model of analysis of 

variance (ANOVA) (α=0.05) to determine the significance 

between groups. When significance differs was detected 

by pairwise comparisons, multiple comparisons were 

performed using Tukey's test.  

Results and discussion 
Identification of the fungal isolate for biosynthesis of 

ZnONPs 

Morphological identification of fungal isolates 

A fungal isolate of NWMA 1 was isolated and 

identified morphologically and genetically.  Colonies of 

fungal isolate are fast growing and a dark white with faint 

black in color, sporangiophores are brownish and 

branched, and sporangia are spherical in shape, black in 

color, and large in size. Sporangiospores are oval in shape 

(Figure 1).  

 

 
 

Fig 1. Rhizopus arrhizus (NWMA1), A- colony, B- 

sporangia and sporangiophores and C- 

sporangiospores. 

 

To confirm the morphological identification, A 

fungal isolate was identified genetically using the ITS 

region. The sequence analysis revealed that the fungal 

NWMA1 was highly related to Rhizopus arrhizus 

(accession number PQ270498.1) with similarity 

percentages of 99.31 %. Therefore, the fungal isolate 

NWMA1 in this study was specifically identified as 

Rhizopus arrhizus isolate NWMA1 as shown in the 

phylogenetic tree (Figure 2). The molecular identification 

confirmed the morphological identification of R. 

arrhizus, and this sequence was deposited in a gene bank 

with accession number PQ203973.1. 

 

Characterizations 

UV-Visible spectroscopy  

Figure 3 illustrates the UV-visible spectroscopy 

spectrum of the mycosynthesis of ZnONPs using 

NWMA1 isolate. The spectra showed absorbance peaks 

around 270 nm, which correspond to the characteristic 

band of ZnONPs, according to previous notices (López & 

Rodriguez-Paez 2017, Karam & Abdulrahman 2022). 
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Fig 2. Phylogenetic tree of the fungal taxon Rhizopus 

arrhizus (NWMA1). 

Fig 3. UV-Vis spectrum of ZnONPs produced by 

NWMA1. 

The XRD patterns of synthesized zinc oxide 

nanoparticles using NWMA1isolate shown in Figure 4A. 

The diffraction pattern observed peaks located at 31.84°, 

34.52°, 36.33°, 47.63°, 56.71°, 62.96°, 68.13°, 69.18°, 

70.16°, 73.21°, and 78.56° which ascribed to the (100), 

(002), (101), (102), (110), (103), (200), (112), (201) (004), 

and (202) planes, respectively. The obtained peaks can be 

indexed to the hexagonal wurtzite structure of ZnO 

(JCPDS card no. 36–1451) (Kim et al. 2017, Reddy et al. 

2017). On the other side, the CMC/ST@ZnONPs matrix 

diffraction patterns  (Figure 4B) display a broad peak at 

2θ equal to around 23° that is associated with the low 

crystallinity of the CMC/St polysaccharide templet 

structure in addition to the diffraction peaks of ZnO 

located at 31.84°, 34.52°, 36.33°,47.63°, 56.71°, 62.96°, 

68.13°, 69.18°, 70.16°, 73.21°, and 78.56°corresponding 

to the hexagonal wurtzite structure of ZnO (JCPDS card 

no. 36–1451). These obversions affirmed the formulation 

of ZnONPs into the CMC/ST template.  

 

 

Fig 4. X-ray diffraction pattern of ZnONPs of 

NWMA1 (A) and nanocomposite (B). 

FTIR spectroscopy spectrum of CMC/ST@ZnONPs 

composite synthesized by NWMA1 isolate was presented 

in figure 5. FTIR measurements were carried out to 

identify the potential functional groups of the molecules 

present in the nanocomposite. Metal oxides generally 

give absorption in the fingerprint region, i.e., below 1000 

cm−1, arising from inter-atomic vibrations. In this 

context, the bands at 626 and 561cm−1 corresponded to 

Zn-O stretching and hexagonal phase ZnO, respectively 

(Kumar & Rani 2013). These affirmed the formulation of 

the ZnONPs into nanocomposite. In addition, the band at 

2921 cm−1 corresponds to the C-H stretch, and the band 

at 3860 cm−1 corresponds to OH stretching vibration, all 
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representing the polysaccharides (Abdelraof et al. 2020, 

Hasanin et al. 2022). The band at 1409 cm−1 due to 

interactions between ZnO nanoparticles and the O-H 

groups. 1324 cm−1 corresponds to C-H bending 

(Soubhagya et al. 2022). Moreover, the band at 1135 

cm−1 corresponds to the C-O-C carbohydrate linkage 

(Turky et al. 2020, Hasanin 2021). These above findings 

affirmed the formulation of CMC/ST@ZnONPs. 

 

 
 

Fig 5. FTIR spectrum of CMC/ST@ZNONPs 

synthesized by NWMA1 isolate. 

 

Topographical analysis  

The topographical analysis, including TEM and SEM 

with EDX charts, was carried out to study the size and 

shape of biosynthesis ZnONPs using NWMA1 isolate. 

TEM images showed a mixture of hexagonal and 

spherical, shaped particles for the ZnONPs nanoparticles 

synthesized (Figure 6 A). Particle size was within the 

ranges of 8-25 and 6-15 nm. The nanoparticles were 

individuals and agglomerated in clusters. Diffraction 

rings can be allocated as (100), (002), and (101) planes 

from the  SAED pattern of ZnONPs (Figure 6 B), 

representing the hexagonal structure coupled with the 

wurtzite-like structure of ZnONPs as shown in the XRD 

pattern (Ruddaraju et al. 2019, Zaki et al. 2021). In 

addition, the CMC/ST@ZnONPs TEM image presented 

in (Figure 6C) is a nanonetwork that could be referred to 

as CMC and ST, as well as many black dots were 

observed on the surface due to the ZnONPs particles. 

Additionally, the SAED pattern (Figure 6D) was 

presented with low crystallinity compared to ZnONPs 

that returned to the interaction of CMC and ST. 

In addition, SEM images and EDX chart of 

CMC/ST@ZNONPS ZnONPs by NWMA1 isolate is 

presented in Figure (7). The low magnification SEM 

image observed a rough surface with some spots of 

metallic chain due to polysaccharides and ZnONPs, 

respectively. On the other side, the high magnification 

SEM image (Figure 7 B) was presented as a fluffy 

surface that due to the structure of the biopolymer that 

doped with metallic spherical shapes continuous   

homogeneity, crack-free, and bubble-free morphology on 

the surface can be seen. The EDX chart of 

CMC/ST@ZnONPs (Figure 7C) revealed a Zn-specific 

peak around 1 keV and a weak signal at about 8.5 keV, 

which was characteristic absorption for metallic Zn, also 

peaks of carbon oxygen and nitrogen are seen, evidencing 

the presence of CMC as capping agent that increases the 

relative concentrations of carbon and sodium. 

 

Fig 6. TEM images of synthesized ZnONPs synthesized 

by NWMA1 isolate (A), SAED of ZnONPs. TEM 

images of synthesized CMC/ST@ZnONPs  (C) 

and SAED (D). 

Fig 7. SEM images at different magnifications at low (A) 

and high (B) of CMC/ST@ZNONPS as well as 

EDX chart (D). 

 

 



 

 

Alnagar et al. 2025                                                                                                        Microbial Biosystems 10(1)-2025 

74 

Isolation and identification of pathogenic bacteria  

Thirty pathogenic bacteria were recovered from 

different patient specimens, and VITEK® 2 was used for 

clinical identification, Table 1 describes the pathogenic 

bacterial strains, and their percentage ascendingly 

ordered. Candida albicans as a unicellular fungus in 

addition to 9 pure bacterial cultures was recovered once 

with a percentage of (3.33%); Aeromonas veronii, 

Bacillus subtilis, Citrobacter youngae, Klebsiella 

ozaenae, Proteus mirabilis, Pseudomonas aeruginosa, 

Pseudomonas fluorescens, Serratia marcescens, and 

Staphylococcus heamolyticus. Two cultures of 

Enterobacter cloacae were isolated with a percentage of 

(6.67%). Three cultures of Acinetobacter baumannii were 

purified and their percentage represents (10%). Five 

cultures of E. coli which represent 16.67%, and 10 pure 

cultures of Klebsiella pneumonia (33.33%) were also 

reported. 

An antibiotic susceptibility test was performed, and 

the multidrug-resistant strains were selected. 

Accordingly, their assessment report was tabulated in 

Table 2 that describes the antibiotic susceptibility profiles 

of the MDR and as well as their index which indicates 

degree of susceptibility of each selected strain depending 

upon MIC values according to CLSI 2010, 2011 (Kamel 

et al. 2022,  Soliman et al. 2022). 

Out of the 30 isolated bacterial strains, 8 MDR strains 

were selected for further investigations; Acinetobacter 

baumannii 110, Bacillus subtilis, E. coli 127, Klebsiella 

pneumonia 115, 117, 124, and Pseudomonas aeruginosa. 

Table 2 shows Acinetobacter baumannii 110 was the 

most resistant strain. In contrast, it showed resistance to 

all 20 tested antibiotics followed by Klebsiella 

pneumonia 124 and Pseudomonas aeruginosa which were 

resistant to 19 tested antibiotics and only susceptible to 

tigecycline. On the other hand, E. coli 127 was 

susceptible to 4 antibiotics: amikacin, gentamycin, 

nitrofurantoin, and tigecycline. 

 

Antimicrobial activity of ZnONPs and 

CMC/St@ZnONPs composite 

Nanocomposites have emerged as promising materials 

in the field of antimicrobial applications due to their 

enhanced surface area and unique properties (Hasanin et 

al. 2021, Hasanin et al. 2022, Saravanan et al. 2023). By 

incorporating nanoparticles, such as silver, copper, or zinc 

oxide, into a polymer matrix, these nanocomposites 

exhibit superior antimicrobial activity against a wide range 

of pathogens (Elbasuney et al. 2021, Shehabeldine et al. 

2022). 

In this study, the antimicrobial activity ZnONPs, 

CMC/St@ZnONPs composite and Zn(CH3COO)2.2H2O 

solution were tested at concentration of 1000 µg mL–1 

using agar diffusion method. Seven bacterial strains (K. 

pneumonia 127, K. pneumonia 117, B. subtilis, K. 

pneumoni 115,  Acenetobacter bumanii 110, Pseudomonas 

aerogenosa and  E.coli 127, in addition to the unicellular 

fungus C. albicans) were used as shown in Tabl 3 and 

Figure 8. Results revealed that, ZnONPs exhibited 

antibacterial and antifungal activity toward multidrug-

resistant bacteria and fungi where Inhibition zones toward 

K. pneumonia 124, K. pneumonia 117, B.subtilis, K. 

pneumonia115, Acenetobacter bumanii 110, pseudomonas 

aerogenosa, E. coli 127, C. albicans were 28, 21, 36, 20, 

22, 21, 20 and 38 mm, respectively. Meanwhile, 

CMC/St@ZnONPs composite displayed antimicrobial 

activity higher than monometallic ZnONPs where 

inhibition zones were 40, 25, 43, 17, 25, 25, 25 and 45 mm 

against k. pneumonia 124, K. pneumonia 117, B. subtilis, 

K. pneumonia 115, Acenetobacter bumanii 110, 

pseudomonas aerogenosa, E. coli 127, C. albicans. 

 

Table 1. Isolated pathogenic bacteria and Candida; number and frequency. 
 

Microbial strains Number Isolation frequency (%) 

Candida albicans         1 3.33 

Aeromonas veronii 1 3.33 

Bacillus subtilis 1 3.33 

Citrobacter youngae 1 3.33 

Klebsiella ozaenae  1 3.33 

Proteus mirabilis 1 3.33 

Pseudomonas aeruginosa 1 3.33 

Pseudomonas fluorescens 1 3.33 

Serratia marcescens  1 3.33 

Staphylococcus heamolyticus   1 3.33 

Enterobacter cloacae 2 6.67 

Acinetobacter baumannii 3 10 

Escherichia coli 5 16.67 

Klebsiella pneumonia    10 33.33 

Total 30 100 
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On the other hand, zinc acetate as a start material had 

weak antimicrobial activity toward some of the tested 

bacterial and fungal isolates. 

The antimicrobial mechanisms of carboxymethyl 

cellulose CMC/St@ZnONPs nanoparticles (ZnONPs) 

composites primarily involve the physical and chemical 

interactions between the composite material and microbial 

cells. ZnO nanoparticles possess intrinsic properties that 

can disrupt microbial cell membranes, leading to cell 

leakage and ultimately cell death. When incorporated into 

the CMC-starch matrix, these nanoparticles enhance the 

composite’s surface area and reactivity (Siddiqi et al. 

2018, Irede et al. 2024). The presence of CMC and starch 

not only provides a biocompatible environment but also 

can facilitate the sustained release of ZnO ions, which 

further contributes to the antimicrobial activity by 

generating reactive oxygen species (ROS). These ROS can 

damage cellular components, including lipids, proteins, 

and DNA, effectively hindering microbial growth and 

proliferation (Zhong et al. 2018). 

Previous studies reported the antimicrobial activity of 

nanocomposites based on ZnONPs. (Shehabeldine et al. 

(2022) reported that fotton fabrics with nanocomposite 

based on ZnONPs acyclovir, nanochitosan, and clove oil 

showed promising antibacterial activity toward S. aureus, 

S. pyogenes, E. coli and K. aerogenes. (Hasanin et al. 

(2023c) succeeded in the preparation of nanocomposite 

based on  mycosynthesized bimetallic Zn-CuO NPs, 

nanocellulose, and chitosan, where this nanocomposite 

had antimicrobial activity toward B. subtilis, E.coli and S. 

aureus, C. albicans and C. neoformans. 

 

In vitro cytotoxicity of ZnONPs and CMC/St@ZnONPs 

nanocomposite 

The potential cytotoxic effect of ZnONPs and 

CMC/St@ZnONPs composites was evaluated against 

Vero normal cell line to determine the maximum non-

toxic dose (MNTD). As shown in Figure 9, the viability 

of Vero cells was more than 88% with concentrations of 

31.25, 62.5, and 125 µg mL–1for both ZnONPs and 

CMC/St@ZnONPs composite. The viability (%) of Vero 

cells were 99.4±0.36, 98.9±0.97, 95.5±1.4, 28.6±1.0, 

8.6±0.52, and 3.15±0.15 % corresponding to ZnONPs at 

concentrations 31.25, 62.5, 125, 250, 500, and1000 µg 

mL–1, respectively. Meanwhile, the viability (%)  of Vero 

cells were 99.16 ± 0.29, 98.3 ± 0.40, 88.3 ±1.25, 24.7 

±0.65, 12.4 ±0.68, and 5.6 ± 0.6 % corresponding to 

CMC/St@ZnONPs composite at concentrations 31.25, 

62.5, 125, 250, 500, and1000 µg mL–1, respectively. 

Furthermore, results illustrated that IC50 of ZnONPs and 

CMC/St@ZnONPs toward Vero cells were 202.58 ± 2.19 

and 193.94 ± 1.53 µg mL–1, respectively. In general, if 

the IC50 is ≥ 90 µg mL–1, the material is classified as non-

cytotoxic (Ioset et al. 2009). Therefore, the 

biosynthesized ZnONPs and CMC/St@ZnONPs 

nanocomposite is considered safe to use. 

In vitro anticancer activity of ZnONPs and 

CMC/St@ZnONPs nanocomposite 

Nanocomposites have emerged as promising materials in 

the field of cancer treatment due to their unique properties, 

such as enhanced surface area and the ability to 

encapsulate therapeutic agents. These composites often 

combine nanoparticles with polymers or other materials, 

allowing for targeted drug delivery, improved 

bioavailability, and reduced side effects (Mondal et al. 

2023, Andoh and Ocansey 2024). In the current study, 

both ZnONPs and CMC/St@ZnONPs composite were 

evaluated anticancer activity toward MCF7 cancerous cell 

line as shown in Figure 10. Results showed that the 

exposure of MCF7 (human breast cancer cell) to effect of 

ZnONPs and CMC/St@ZnONPs composite at various 

concentrations significantly reduced the cell viability in a 

concentration dependent manner. Results revealed that 

anticancer activity of ZnONPs at safe concentration 125, 

62.5 and 31.25 µg mL–1were 83.21, 52.52 and 0.17 % 

respectively. Moreover, CMC/St@ZnONPs composite 

showed anticancer activity but slightly lower than 

ZnONPs only, where were 73.4, 47.87 and 0 % toward 

MCF7 cell line as shown in Figure 10. Additionally, IC50 

of both ZnONPs and CMC/St@ZnONPs composite 

against MCF7 were 61.22 ± 1.09 and 84.47 ± 2.48 µg mL–

1.  

Zinc oxide nanoparticles (ZnONPs) exhibit significant 

anticancer properties through various mechanisms, 

including the generation of reactive oxygen species 

(ROS), which can induce apoptosis in cancer cells. The 

incorporation of carboxymethyl cellulose (CMC) and 

starch to form a composite with ZnONPs enhances their 

stability and biocompatibility, allowing for targeted drug 

delivery and increased cellular uptake. This composite not 

only improves the therapeutic efficacy of ZnONPs but also 

minimizes side effects associated with conventional 

chemotherapy. Studies have shown that the 

CMC/St@ZnONPs composite can effectively inhibit 

tumor growth by promoting oxidative stress specifically in 

cancer cells while sparing normal cells, thereby paving the 

way for more effective cancer treatments (Bisht and 

Rayamajhi 2016). 

Conclusion  

In conclusion, the study successfully demonstrated the 

mycosynthesis of zinc oxide nanoparticles (ZnONPs) and 

their composite with CMC-Starch, highlighting their  
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Table 2: Antibiotic susceptibility profiles of the selected MDR pathogenic bacteria. 

Antibiotics A. baumannii 110 B. subtilis E. coli 127 K. pneumoniae 115 K. pneumoniae 117 K. pneumoniae 124 P. aeruginosa 

MIC Index MIC Index MIC Index MIC Index MIC Index MIC Index MIC Index 

Amikacin >32 R 16 S <=8 S 16 S >32 R >32 R >32 R 

Gentamicin >8 R >8 R <=2 S <=2 S >8 R >8 R >8 R 

Ertapenem >4 R >4 R >4 R >4 R >4 R >4 R >4 R 

Imipenem >8 R >8 R 8 R >8 R >8 R >8 R >8 R 

Meropenem >8 R >8 R 8 R >8 R >8 R >8 R >8 R 

Cephalothin >16 R >16 R >16 R >16 R >16 R >16 R >16 R 

Cefuroxime >16 R >16 R >16 R >16 R >16 R >16 R >16 R 

Cefoxitin >16 R >16 R >16 R >16 R >16 R >16 R >16 R 

Ceftazidime >16 R >16 R >16 R >16 R >16 R >16 R >16 R 

Ceftriaxone >32 R >32 R >32 R >32 R >32 R >32 R >32 R 

Cefepime >16 R >16 R >16 R >16 R >16 R >16 R >16 R 

Aztreonam >16 R >16 R 16 R >16 R >16 R >16 R >16 R 

Ampicillin >16 R >16 R >16 R >16 R >16 R >16 R >16 R 

Amoxicillin-clavulanic acid (AMC) >16/8 R >16/8 R >16/8 R >16/8 R >16/8 R >16/8 R >16/8 R 

Piperacillin/ Tazobactam >64/4 R >64/4 R >64/4 R >64/4 R >64/4 R >64/4 R >64/4 R 

Trimethoprim/sulfamethoxazole 

(SXT) 

>4/76 R <=1/19 S >4/76 R >4/76 R <=1/19 S >4/76 R >4/76 R 

Nitrofurantoin >64 R >64 R <=16 S >64 R >64 R >64 R >64 R 

Ciprofloxacin >2 R >2 R >2 R >2 R >2 R >2 R >2 R 

Levofloxacin >4 R >4 R >4 R >4 R >4 R >4 R >4 R 

Tigecycline >4 R >2 S <=1 S 4 I 4 I >2 S >4 S 

Where: The orange cells indicate (S) susceptibility to the tested antibiotic, the blue cells indicate (I) intermediate susceptibility to the tested antibiotic, and the unfilled 

cells indicate (R) resistance to the tested antibiotics. 

Table 3. Antimicrobial activity of ZnONPs, CMC/St@ZnONPs and Zn(CH3COO)2.2H2O at concentration of 1000 µg mL–1   
 

Organism Inhibition zone(mm) 

ZnONPs  CMC/St@ZnONPs  Zinc acetate 

K. pneumonia 124 28 40 0 

K. pneumonia 117 21 25 7 

B. subtilis 36 43 5 

C. albicans 38 45 4 

K. pneumonia 115 20 17 3 

A.  bumanii 110 22 25 0 

P. aerogenosa 21 25 0 

E. coli 127 20 25 3 
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Fig 8. Antimicrobial activity of ZnONPs, CMC/St@ZnONPs composites, and Zn (CH3COO)2.2H2O using agar well 

diffusion method. 
 

Fig 9. Effect of different concentrations of ZnONPs and 

CMC/St@ZnONPs nanocomposite toward Vero 

normal cell line. 

Fig 10. Anticancer activity of ZnONPs and 

CMC/St@ZnONPs nanocomposite toward MCF7 

cancerous cell line at different concentrations. 

 

potential as effective agents against multi-drug resistant 

pathogens. The antimicrobial assays showed that the  

CMC/St@ZnONPs nanocomposite exhibited superior 

activity against a range of resistant bacterial and fungal 

isolates, with notable inhibition zones. This suggests that 

such nanocomposites could serve as valuable alternatives 

in combating infections, particularly in an era where 

traditional antibiotics are becoming increasingly 

ineffective. Additionally, while ZnONPs showcased 

stronger anticancer activity against the MCF7 cell line 

compared to the composite, both materials exhibited 

promising results that warrant further investigation. As a 

consequence of the aforementioned findings, it may be 

inferred that Rhizopus arrhizus produces a variety of 

proteins and enzymes, obviating the need for chemical 

reducers and stabilizers. As a result, the biological method 

for the production of ZnONPs utilizing Rhizopus arrhizus 

has been presented in this work. The application of 

ZnONPs as antimicrobial and anticancer agents and their 

composites in has yet to be completely investigated and 

further study on risk assessment is still needed. 
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