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Introduction 

Energy is essential for promoting economic expansion 

and attaining sustainable development, irrespective of a 

nation’s development. Non-renewable resources, 

including natural gas, coal, and petroleum, meet most of 

the world's energy needs. Since energy was created over 

thousands of years, these resources cannot be renewed 
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ABSTRACT 

Energy is essential for economic growth and sustainable development. The 

conventional finite exhaustible resources such as petroleum, natural gas, and 

coal dominate the global energy supply but are limited and geographically 

dispersed. India has turned to sustainable alternatives like ethanol blending 

to reduce dependency on imported oil. Bioethanol production leverages 

lignocellulosic biomass through enzymatic saccharification, fermentation, 

and pre-treatment processes. This study investigates bioethanol production 

using a wild Escherichia coli strain isolated from the Cooum River, 

employing a fed-batch fermentation method to optimize yield and efficiency. 

Samples of cellulose-rich compost and Cooum River water were collected to 

isolate microbial strains for fermentation trials. E. coli isolates were purified 

using nutrient agar and characterized microscopically and biochemically. 

Fermentation was carried out in controlled batches and continuous reactors, 

using various nutrient combinations. Key process parameters like pH, 

temperature, and RPM were optimized using Response Surface Methodology 

(RSM) to maximize ethanol yield. The study extensively analyzed ethanol 

production using various microbial strains and fermentation conditions. 

Batch operation with E. coli FBWHR and sugar maple hydrolysate revealed 

optimal ethanol production (20.38 g/L) at 50% sugar concentration, with 

sequential sugar utilization. Levoglucosan fermentation by E. coli KO11 

achieved a 40% theoretical yield, prompting comparative studies with 

Zymomonas mobilis. Continuous operation with E. coli FBR5 using wheat 

straw hydrolysate (WSH) produced stable ethanol yields (~19.2 g/L), 

improved by desalting. Salt tolerance (up to 40 g/L NaCl) and xylose 

tolerance (250 g/L) were noted. Regression analysis highlighted key factors 

like sugar utilization, ethanol yield, and cell mass influencing productivity. 

This study highlights the critical role of substrate optimization, inhibitor 

removal, and strain engineering in enhancing ethanol productivity under 

varying fermentation conditions, aligning with prior findings on microbial 

robustness and process efficiency. 

                             Published by Arab Society for Fungal Conservation     
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quickly enough to allow for sustainable consumption. 

They are also geographically dispersed, which forces 

many countries to purchase crude oil, especially from the 

Middle East, to meet their energy needs. At almost 4% of 

worldwide energy usage, India is the fifth-biggest energy 

consumer, ranking behind the United States, China, 

Russia, and Japan (Niphadkar et al., 2018; Singh et al., 

2017). 

India has also seen significant growth in ethanol 

(EtOH) production, driven by its focus on reducing 

dependency on imported oil and meeting energy needs 

sustainably. India generated over 3.3 billion litres of 

EtOH in the 2020–21 supply year, mostly for use in 

gasoline blends. By 2022, EtOH and gasoline were 

blended at a rate of about 10%, with intentions to expand 

to 20% by 2025. India imported about 2 million barrels of 

crude oil in 2021 as a result of EtOH generation (Pattnaik 

et al., 2024). 

Energy crops such as switchgrass and miscanthus, 

along with processing byproducts like rice hulls and 

maize fiber, and agricultural residues including corn 

stover, wheat straw, barley straw, rice straw, and 

sugarcane bagasse, represent cost-effective feedstocks for 

gasoline-ethanol production. Enzymatic saccharification, 

fermentation, product recovery, and feedstock pre-

treatment are the four main steps during the conversion of 

lignocellulosic (LC) biomass into EtOH. Pre-treatment is 

a crucial step in preparing LC biomass for enzymatic 

hydrolysis. After pre-treatment and saccharification, a 

mixture of fermentable sugars including glucose, xylose, 

arabinose, and galactose is produced, which is essential 

for supporting microbial fermentation (Hiloidhari et al., 

2019; Nahak et al., 2022). 

The metabolic process of fermentation, which occurs 

in bacteria, yeast, and oxygen-depleted muscle cells, 

transforms carbohydrates into acids, gases, or alcohols. 

Fermentation also refers to zymology, the large-scale 

cultivation of microbes for producing goods like food 

additives, enzymes, and antibiotics. In low oxygen 

conditions, fermentation replaces the electron transport 

chain (ETC) as the primary source of ATP by converting 

pyruvate and NADH into NAD+ and other byproducts to 

sustain glycolysis (Mani et al., 2018). Obligate anaerobes 

rely entirely on fermentation, whereas oxidative 

phosphorylation is more effective under oxygen-rich 

conditions. 

Since the Neolithic period, fermentation has been 

used to preserve foods like yoghurt, kimchi, and pickles, 

and to produce alcoholic beverages like wine and beer. 

Common fermentation products include EtOH, CO2, 

lactic acid, and hydrogen gas, with yeast playing a key 

role in EtOH and CO2 production for beverages (Ross et 

al., 2002). Industrial fermentation involves the controlled 

use of bacteria and fungi to produce useful products for 

food and pharmaceutical industries, including EtOH, 

citric acid, and acetic acid. Factors such as temperature, 

pH, oxygen levels, microbial strains, and enzymes 

significantly impact fermentation yield. Genetically 

engineered microbes are increasingly used to produce 

enzymes like invertase, lipase, and rennet. Fermentation 

processes are categorized by their outputs, including 

biomass (viable cells), extracellular metabolites 

(chemicals), intracellular components (proteins or 

enzymes), or substrate conversion to useful products 

(Formenti et al., 2014; Ross et al., 2002). 

Biological processes are optimized in sterile, 

controlled environments using specialized vessels called 

bioreactors. These vessels regulate nutrient flow, oxygen 

levels, and metabolic byproducts to create a 

biomechanical and biochemical environment for cell 

growth. Unlike conventional chemical reactors, 

bioreactors require precise control to address the 

sensitivity of living organisms, which are prone to 

contamination and mutation. Bioreactors vary in size, 

from small laboratory fermenters to large industrial 

systems. To maintain process stability, key parameters 

such as temperature, dissolved oxygen, pH, gas flow, 

agitation speed, and foam control must be monitored and 

adjusted. Based on operation mode, bioreactors can be 

batch, fed-batch, or continuous systems (Kaur et al., 

2021). 

Batch reactors use sterilized culture media and 

microbes, allowing reactions to proceed over a set period 

with aeration for aerobic cultures, and products are 

collected at the end. Continuous reactors maintain steady 

nutrient flow and product removal, ensuring constant 

conditions. Fed-batch reactors combine batch and 

continuous techniques by gradually adding nutrients 

during the process to enhance yields. Specialized 

bioreactors include plug-flow reactors, which allow 

unidirectional flow for uniform reaction times but present 

challenges with heat and temperature control; bubble 

column reactors, which use gas bubbles for efficient heat 

and mass transfer with minimal maintenance; and packed-

bed reactors, where fluids flow through immobilized 

biocatalysts but may face poor oxygen transport and 

temperature control issues (Singh et al., 2014; Spier et al., 

2011). 

Advances in metabolic engineering have enhanced n-

butanol production in E. coli and other hosts by utilizing 

NADH accumulation and NADH-dependent CoA 

reductases. Similarly, the Ehrlich pathway, naturally 

present in yeast, catabolizes branched amino acids to 

produce higher alcohols or fusel alcohols (Lee and Trinh, 

2019). Enzymes like 2-keto acid decarboxylase and 

alcohol dehydrogenase have been introduced into E. coli, 



 

 

 

 Subramanian and Suresh 2025                                                                             Microbial Biosystems 10(2)-2025 

 

145 

C. glutamicum, and cyanobacteria to boost alcohol 

production. In cell-free systems, isobutanol production 

has reached near-commercial yields. Fusel alcohols are 

enzymatically esterified with acyl-CoAs to produce esters 

for fuels, flavors, perfumes, and solvents. Ethanol and 

isobutanol lactate esters engineered in E. coli serve as 

eco-friendly solvents (Keasling et al., 2021; Rodriguez et 

al., 2014). 

Additionally, Rhodococcus opacus produces high 

levels of free fatty acids (FFAs) and long-chain 

hydrocarbons, advancing bio-based sustainable 

oleochemical industries (Lee and Trinh, 2019). Yarrowia 

lipolytica has been engineered to boost long-chain methyl 

ketone production by optimizing peroxisomal β-oxidation 

pathways, facilitating β-KCoA accumulation. Integrating 

heterologous pathways and targeting enzymes to 

peroxisomes maximizes production efficiency, with 

methyl ketone yields significantly influenced by oxygen 

availability (Hanko et al., 2018). 

This study aimed to explore bioethanol 

production from biomass using a wild E. coli strain 

isolated from the Cooum River. A minimal nutrient 

broth, supplemented with essential ingredients, was 

used to support microbial growth and ethanol 

production. The fermentation process was optimized 

using a Design of Experiments (DOE) approach and 

Response Surface Methodology (RSM) to identify the 

best combination of ingredients for higher ethanol 

yield. Fermentation trials were conducted in a pilot-

scale fermenter using a fed-batch method, with 

particular attention to how fermenter design and 

process conditions could improve efficiency and 

stability. The study highlights the potential of using 

naturally occurring microbial strains and process 

optimization for sustainable bioethanol production. 

 

Materials and Methods 

 

Sample collection  

The cellulose-rich plant compost heaps, both wet 

and dry, were gathered from the Western Ghats region. 

These samples were selected due to their high cellulose 

and organic content, which qualifies them for the 

synthesis of bioethanol. To isolate a wild strain of E. 

coli, water samples were taken from the Cooum River's 

banks, particularly from upstream areas. To guarantee 

access to a variety of microbial populations that could 

be able to convert biomass effectively, these riverside 

samples were chosen. The goal of the sampling strategy 

was to supply fermentation trials with raw materials and 

microbial isolates. 

 

Bacterial isolation  

The samples were primarily diluted in H2O. After 

the samples were diluted, 0.1 ml of the solution was 

applied to nutrient agar plates. The samples were grown 

on soybean-casein digest media. The plates were 

incubated at 30 °C for a period of 2–3 days. Following 

incubation, bacterial colonies were found and chosen for 

additional examination. Continuous subculturing was 

carried out to purify colonies. Then, purified isolates 

were grown on MacConkey Agar plates. The 

appearance of the colonies was noted, and the 

arrangement of the cells was evaluated under a 

microscope (Crecchio et al., 2004). 

 

Inoculum and culture conditions 

One isolated colony from the sample was 

transferred into 3 mL of liquid medium and incubated 

overnight at 37 °C to generate the inoculum. 

Subsequently, 250 mL Erlenmeyer flasks containing 50 

mL of liquid medium were inoculated with 0.2 ml 

aliquots of the inoculum. These were incubated at 37 °C 

and 200 rpm in a rotary shaker. The remaining mixtures 

were incubated at 30 °C for 2–4 hours to enhance the 

concentration of bacteria, which were initially present in 

low quantities. Quantity of 10, 25, and 50 μL aliquots of 

these enhanced mixes were plated on nutritional agar 

and cultured at 30 °C for 2–3 days. The color and shape 

of the colonies were used to distinguish between the 

bacterial isolates. The discovered pure culture of the 

isolated colonies was stored in 0.9% biological saline.  

The morphology, nutritional qualities, and biochemical, 

physiological, and molecular characteristics of bacterial 

cultures were used to characterize them. Gram staining, 

non-spore formation, and organic compounds were the 

techniques used first to identify the E. coli isolates. 

Following confirmation of the Gram stain results, the 

bioMérieux VITEK® 2 Compact system was used to 

further identify the same strain.  

 

Fermentation process for the EtOH yield 

The EtOH obtained was executed by using batch and 

continuous process. In 500 mL pH-controlled fleakers 

with a 350 mL working volume, batch fermentation 

tests were carried out at 35 °C and pH 6.5. The setup 

used 4 M NaOH instead of KOH to adjust the pH. The 

fleaker caps were fitted with ports for a pH probe, CO₂ 

vent, sampling needle, and addition of base. No oxygen 

exclusion procedures were used, and mixing at 100 rpm 

was guaranteed using a magnetic stirrer was positioned 

beneath a water bath. For continuous culture (CC), a 
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500 mL fleaker fermenter with feed and output ports, 

automatic pH control, and a working volume of 240 mL 

was used operating in a partially anaerobic condition. 

To minimize the need for 4 M NaOH additions to 

maintain a pH of 6.5, the substrate was prepared with 5 

g/L yeast extract and 10 g/L tryptone. The pH was then 

adjusted to 7.5 using 10 M NaOH. The volume of the 

inoculum was 10% (v/v), and the medium was filter-

sterilized. Following 16 hours of batch fermentation, a 

peristaltic pump was used to continuously feed filter-

sterilized substrate at a predetermined rate while 

concurrently removing and collecting the effluent under 

sterile conditions. Continuous operation lasted for 16–

105 days, with duplicate experiments run in parallel to 

ensure reproducibility and comparison (Saha and Cotta, 

2011). Table 1 (supplementary) summarizes the media 

combinations employed in the experimental conditions.   

 

Results and Discussion 

 

This is the simplest mode of operation wherein 

substrates, culture medium, inoculum, and nutrients are 

provided at the beginning of the process and left to run 

for a predetermined time. The batch mode of operation 

is regarded as efficient, as it enables complete 

sterilization. A multivessel system makes it easy to 

manage feedstock and does not require laborious skills. 

The most important characteristic is flexibility in 

choosing various product specifications. Yet, we cannot 

neglect the disadvantages, such as low productivity and 

the substrate inhibition phenomenon observed at higher 

concentrations of substrates. Also, it is labor-intensive 

and involves higher production costs. 

In the E. coli FBWHR strain, ethanol (EtOH) 

production in batch culture has been reported (Yang and 

Shijie, 2015). The E. coli FBWHR strain was selected 

due to its well-characterized genome, high plasmid 

uptake efficiency, robust growth, stress resistance, and 

extensive use in synthetic biology and biofuel studies. 

This strain is adapted to hot-water extracts from sugar 

maple wood, which predominantly consist of xylose, 

along with small amounts of galactose, mannose, 

rhamnose, arabinose, and glucose. Biomass and ethanol 

production were monitored at sugar concentrations of 

30% (v/v), 40% (v/v), 50% (v/v), and 60% (v/v). Table 

2 (supplementary) shows the phases of batch culture 

ethanol production at various sugar concentrations. 

With an increased glucose concentration (60 g/L), 

fermentation improved along with ethanol 

accumulation. Another notable strain developed for 

ethanol production is E. coli FBR5, which is engineered 

to metabolize both pentose and hexose sugars to ethanol 

and other metabolites at higher yields. In this study, the 

effect of xylose concentration and the inhibitory effects 

of salts and ethanol on both cell growth and ethanol 

production were observed. The microbe was initially 

acclimatized to 100 g/L xylose, then subjected to 

concentrations ranging from 50 to 250 g/L. To 

understand salt inhibition, NaCl was provided within a 

concentration range of 0 to 40 g/L. 

The increase in sugar concentration showed a 

marginal increase in ethanol production. The lack of 

change at higher sugar levels likely stems from 

saturation, inhibition, or other limiting factors. 

Adjusting pH, temperature, and other culture conditions 

helped improve metabolic efficiency. Notably, E. coli 

FBWHR exhibited a selective sugar usage pattern: 

during the lag phase, it consumed glucose first, followed 

by galactose (rapidly), then arabinose, rhamnose, and 

mannose, with xylose being utilized last. At a sugar 

concentration of 50% (v/v), biomass production was 

maximum (2.469 g/L at 99 hours), although ethanol 

production decreased. 

A cost-effective and abundant substrate for ethanol 

production is lignocellulosic material obtained from 

agriculture. The initial step involves depolymerizing 

monosaccharides, traditionally using enzymes or acids, 

which increases process time and requires mass 

production of those agents. A cheaper alternative is 

pyrolysis of lignocellulosic material to produce 

levoglucosan. Levoglucosan or its derivatives can be 

obtained at 22–33% yield from biomass via pyrolysis, 

though this yield is significantly affected by salt 

concentration. 

Various studies have examined microbial 

utilization of levoglucosan for ethanol production. One 

such study developed E. coli strain KO11 + lgk kinase. 

Even with lgk kinase, the strain produced only 0.24 g 

ethanol per gram of levoglucosan, approximately 40% 

of the theoretical yield, and did not fully utilize 

levoglucosan. Further optimization processes were 

undertaken, including different pyrolysis and 

detoxification methods, along with identifying the 

presence of inhibitors. 

In this experiment, a growth comparison was 

conducted between Zymomonas mobilis ATCC 11020 

and ethanologenic E. coli ATCC 1117 strains. The E. 

coli ATCC 1117 strain demonstrated a preference for 

the pyrolysate sugar medium and was subjected to batch 

fermentation. Glucose concentrations were adjusted to 

20 g/L, 40 g/L, and 60 g/L. Figure 1 (supplementary) 

shows the results for 20 g/L and 40 g/L glucose 

concentrations, while figure 2 (supplementary) 

illustrates observations at 40 g/L glucose in hydrolysate 

broth. 
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In this study, rapid growth was observed at a 

glucose concentration of 20 g/L, and the observations at 

40 g/L were used to construct the kinetic model. 

Additionally, the model was validated using 

observations made at glucose concentrations of 20 g/L 

and 60 g/L. It is obvious from tables 3 and 4 

(supplementary) that product inhibition was also studied 

by adding EtOH in the concentration range of 0 to 50 

g/L. At first, a control experiment was conducted at pH 

6.5 along with other nutrient supplies. At this pH, 

fermentation was sluggish, possibly due to pH, and 

acidic byproduct accumulation (lactic acid, succinic 

acid, acetic acid and formic acid).  Further, the 

observation of fermentation runs monitored for EtOH 

against residual sugar. Similarly, substrate inhibition 

(xylose tolerance) was also studied and is shown in Fig. 

5 (supplementary). Further, added EtOH and xylose 

utilization was shown in Fig. 6 (supplementary). 

 

Optimization of fermentation parameters 

Using statistical analysis tools, a relationship is 

drawn between the parameters used for optimization.  

The factors are time (X) vs. OD (Y) and the following 

results were obtained. Table 5 (supplementary) 

highlights the duration of fermentation and the optical 

density (OD) obtained for microbial growth cycle.  

 

Continuous operation 

The vessel containing viable cells is continuously 

fed with substrates, nutrients, and culture medium with 

simultaneous removal of products and utilized medium. 

The major advantage of this mode of operation is that it 

has higher productivity, a smaller working medium 

volume, and relatively lower investment costs. 

However, there is a high chance of product 

contamination.  The work done by Badal C. Saha and 

Michael A. Cotta (2011) on Escherichia coli strain 

FBR5 to produce EtOH using Wheat straw hydrolysate 

highlights the factors and conditions to be considered 

while conducting continuous fermentation. The 

substrate is pretreated by alkaline peroxide and 

enzymatically saccharified to Wheat straw hydrolysate 

(WSH). The role of salts is also studied, so desalted 

WSH is also prepared. After growing the inoculum in 

batch condition for 16 hours the culture is subjected to 

continuous fermentation. In this study, sugar 

concentrations and dilution rates varied. Table 6 

(supplementary) represents the data on the duration of 

fermentation, dilution rates, total sugar utilized, and 

their respective observations (EtOH produced- 

productivity, succinic acid, and biomass produced). It 

gives us a brief idea that glucose is completely 

exhausted by E. coli FBR5; making it utilize the sugars 

completely is a challenge and majorly it is xylose that 

remains unutilized. EtOH production is stable; it is 

average the same in both 1x and 0.5x sugar 

concentrations. It is succinic acid production that shows 

an increasing trend even though sugar concentration is 

halved.  

 

To understand the role of the salts in EtOH production 

WSH is desalted and supplied as substrate.  

This observation makes it clear that there is an 

improvement in EtOH production (almost a 9.6% 

increase), though there is no big change in residual 

sugars. But when the feedstock is 0.5x then succinic 

acid production is reduced with a 3-5% increase in 

EtOH production. Apart from these, 75% of xylose has 

been utilized.  

 

Scatter plot: 

A scatter plot is used to study the relationship between 

the two variables i.e. Time and Optical density. A graph 

is plotted for time on the x-axis and optical density on 

the y-axis. Figure 7 (supplementary) shows the optical 

density vs time plot graph.  

Upon reviewing the trend, it is observed that both the 

variables (Time and Optical density) exhibit a strong 

relationship, and it was explored further. 

 

Regression 

Linear regression technique is applied to study the 

type of relationship between the two variables Time and 

optical density concerning the parameters. While 

applying the regression analysis, 24 hours was the time 

point chosen because the decrease in the trend was seen 

after 24 hours and it was not considered for the study.  

 

Recipe 1: 

As shown in figure. 8 (supplementary) the 

regression plot of Time vs Optical Density at y = 0.1859 

and r-squared at 0.721. Further, it is noted that the two 

factors have a positive relation, and the r-square reveals 

that 72% of the data fits the regression model.   

 

Recipe 2  

The two factors in the model represented in figure 9 

(supplementary) has a positive relation and the R-square 

reveals 80% of the data fits the regression model and 

illustrates the regression plot of Time vs Optical Density 

at y = 0.204 and r-squared at 0.806. 

 

Recipe 3 

In model 3 the two factors have a positive relation 

and r-square reveals 93% of data fits the regression 
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model. Figure 10 (supplementary) illustrate Time vs 

Optical Density where y = 0.262 and r-squared at 0.937. 

 

Recipe 4 

In this model, the two factors exhibit a positive 

relation and R-square reveals that 81% of the data fits 

the regression model. Figure 11 (supplementary) 

illustrates Time vs Optical Density where y = 0.275 and 

r-squared at 0.810. 

 

Recipe 5 

Even in this model, the two factors have a positive 

relation, and the R-square reveals 77% of the data fit the 

regression model. Figure 12 (supplementary) illustrates 

Time vs Optical Density where y = 0.296 and r-squared 

at 0.777. 

Amongst figures 7–12 (supplementary), the 

regression analysis exhibited by figure 10, recipe 3 

showed a maximum co-relation as it has a very strong 

linear relationship concerning time and OD. This will be 

used for repeatability studies.   

 

Co-relations  

From table 7 (supplementary), it is evident that all 

the selected parameters are significantly correlated, as 

also shown in table 8 (supplementary). This table 

indicates that total sugar utilized, ethanol yield 

consumed, ethanol yield available, and cell mass are all 

correlated. 

To further confirm the potential impact, a 

hierarchical regression analysis was performed. Table 9 

(supplementary) demonstrates that all the selected 

parameters show significant correlation. Additionally, 

tables 10 and 11 (supplementary) present the significant 

parameters along with predictions from steps 3 and 4 for 

the optimized parameters. 

Based on the above tables, the productivity of 

bioethanol is calculated using the following equation: 

Y = y = −0.260 − 0.009x1 + 1.418x2 + 1.137x3 + 

0.356x4 (where x1 – Total sugar utilized, x2 – EtOH 

yield consumed, x3 – EtOH yield available, x4 – cell 

mass). 

The results obtained from the hierarchical 

regression show a 17.5% variance in ethanol 

productivity, which can be predicted by the total sugar 

utilized. The hierarchical regression variance results are 

presented in table 12 (supplementary). Based on these 

results, table 13 (supplementary) further confirms that 

Experimental Design 3, with its significantly correlated 

parameters, is the most effective for optimizing 

bioethanol production. 

 

 

RSM analysis  

Response surface design 

From this plot in supplementary figures, we can 

conclude that the R² value indicates a reasonably good 

fit, and the data regression model is applicable. There is 

clear goodness of fit, and the residual plots do not show 

any major violations. Based on the above analysis, for 

biomass concentration, glucose, magnesium sulphate, 

and temperature, the variation is less than 0.05, 

indicating that the chosen factors are significant. This 

observation is supported by the graphs shown in figure 

13, consistent with the results presented in figure 11 

(Tabassum et al., 2018). 

 

Main effect plot 

Figure 14 (supplementary) demonstrates that 

biomass concentration, glucose, magnesium sulfate, and 

temperature have significant correlations (Asad et al., 

2021). 

 

Contour Plot 

Figure 15 (supplementary) shows that the highest 

optical density (OD) is reached when both biomass 

concentration and glucose levels are low, while 

magnesium sulfate and temperature are held steady at 

255g and 34.25°C, respectively (Balakrishna et al., 

2021). 

Similarly, Figure 16 (supplementary) indicates that 

the maximum OD occurs at higher levels of magnesium 

sulfate and temperature, with biomass concentration and 

glucose fixed at 87.5g and 550g, respectively (Bhaskara 

Rao et al., 2013). 

 

Surface plot 

The data in figure 17 (supplementary) reveals that 

increasing biomass concentration from 50 to 100 to 150 

causes a decline in optimal optical density. A 

comparable trend is observed with changes in nutrient 

concentration. These findings indicate that lower 

glucose and biomass concentrations lead to higher 

optical density when magnesium sulfate and 

temperature are fixed at 255g and 34.25°C, respectively 

(Ojha et al., 2020; Wee et al., 2011). 

According to Figure 18 (supplementary), 

increasing magnesium sulfate concentration from 0 to 

450 enhances the optimal optical density. Temperature 

variations between 32 and 34°C exhibit a similar effect. 

This suggests that higher magnesium sulfate levels 

combined with elevated temperatures result in increased 

optical density. The maximum OD was recorded at 

magnesium sulfate 450g and temperature 34°C, while 

biomass and glucose concentrations were maintained at 

87.5g and 550g, respectively (Lahiri et al., 2021). 
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Optimization plot 

Figure 19 (supplementary) shows that the optimal 

optical density of 2.0 can be achieved with the 

following conditions: biomass concentration at 25, 

glucose at 100, magnesium sulfate at 15, and 

temperature around 31.77 °C (Kizhakedathil et al., 

2018; Naili et al., 2016). 

The experimental models and contour plots 

demonstrate a strong correlation between these factors 

and the optical density response. Keeping biomass 

concentration, glucose, magnesium sulfate, and 

temperature at lower levels helps reach the desired 

optical density. On the other hand, higher levels of these 

factors lead to increased optical density, which is not 

desirable. 

 

Conclusion 

This study demonstrates the efficiency of an isolated 

wild strain of Escherichia coli (NCBI accession# 

PRJNA1138183, locus tag prefix: AB3Z12) under 

fermentation conditions optimized for ethanol (EtOH) 

production, providing insights into key factors 

influencing yield and productivity. Batch fermentation 

results using E. coli tested the effects of biomass, 

glucose concentration, pH, NaCl, xylose, and added 

EtOH, revealing significant parameters that influence 

EtOH production. Similar studies confirmed that sugar 

maple hydrolysate showed optimal EtOH production at 

50% sugar concentration, with sequential utilization of 

glucose and xylose. This pattern highlights the 

substrate-specific metabolic preferences of E. coli, 

consistent with previous findings reporting preferential 

glucose utilization in mixed sugar substrates (Choi et 

al., 2016).  

Levoglucosan conversion to EtOH by E. coli KO11 

with lgk kinase, achieving 40% of the theoretical yield, 

underscores the challenges of processing inhibitory 

substrates. Comparative studies with Zymomonas 

mobilis suggest potential for strain improvement to 

enhance yields, corroborating similar observations in 

strain engineering (Abbate et al., 2023). Continuous 

fermentation using E. coli FBR5 with wheat straw 

hydrolysate showed stable EtOH production (~19.2 

g/L), with improved yields upon desalting of the 

hydrolysate. These results align with studies 

emphasizing the importance of inhibitor removal to 

enhance fermentation performance (Parawira and 

Tekere, 2011). Salt tolerance tests indicated robust 

growth up to 40 g/L NaCl, with EtOH productivity 

peaking at controlled pH and high xylose 

concentrations, consistent with tolerance thresholds 

observed in industrial strains (Fuchino and Bruheim, 

2020). 

 

Regression analysis further confirmed significant 

predictors of EtOH productivity, including total sugar 

utilization, EtOH yield, and cell mass. The high R² 

values obtained (up to 93%) reflect a strong relationship 

between these factors and productivity, supporting 

findings from statistical optimization studies 

(Mihajlovski et al., 2021). Hierarchical regression 

showed that 17.5% of the variance in EtOH production 

was predicted by total sugar utilized, and 17.4% by cell 

mass. Additionally, response surface methodology 

reconfirmed the vital role of these predictive parameters 

in EtOH production. The study indicates that biomass, 

glucose concentration, magnesium sulfate, and 

temperature are significant factors for optimizing EtOH 

production.  

Collectively, these results emphasize the 

importance of substrate optimization, strain 

improvement, and process control in advancing 

bioethanol production. Therefore, future work should 

include experimental knockout of specific genes to 

enhance ethanol tolerance and productivity in 

engineered strains. 
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