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Introduction 

An aerobic, Gram-negative, rod-shaped, motile 

Pseudomonas aeruginosa is known to be optimally 

adapted to various environmental conditions (Riedel, 

2019). Many acute and chronic infections that can result 

in a high percentage of mortality rates in a variety of 

hosts and organs by this opportunistic pathogen can be 

related to its extensive repertoire of virulence factors and 

complex regulatory network of intra- and inter-cellular 

signals that enable it to adapt, flourish, evade the 

defenses of the host, and contribute to successful 

infection and disease (Vidaillac & Chotirmall, 2021, Al 

Jader & Ibrahem 2022, Foulkes et al. 2022; Aboelnasr et 

al. 2024 ). 

Numerous virulence factors give P. aeruginosa the 

possibility for surface adherence, dissemination after 

tissue damage, and nutrient supply, in addition to 

increased survival rate (Coggan & Wolfgang, 2012; 

Balasubramanian et al., 2013; Qaralleh 2024). 

Undoubtedly, Exotoxin A is the highly toxic virulence 

factor of P. aeruginosa (Michalska & Wolf, 2015). P. 

aeruginosa Exotoxin A-based immunotoxins, which 

harness toxin moieties targeting, are usually fusion 

proteins (Morgan et al., 2023). 

In limited iron conditions during the stationary 

phase, when changes in environmental temperature 

occur, and in the presence of specific factors like the 

amino acid glutamine, Exotoxin A is secreted into the 
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ABSTRACT 

Out of sixty-nine different clinical samples included UTI, otitis media, 

wound, and burn infections, fifty samples showed bacterial growth, while the 

remaining were negative for bacterial growth. Only thirty-one (62%) isolates 

were related to Pseudomonas aeruginosa. Results indicated that burn 

infections were the highest with this bacterial colonization. Detection of the 

exotoxin A was conducted by using an ELISA kit. Current results revealed 

that, out of thirty-one P. aeruginosa isolates, only twenty-one were able to 

produce exotoxin A. The isolate (P29) was selected based on its highest 

productivity of this toxin, reaching 29.24 ng/ml, in addition to partial 

purification steps for this toxin that had been conducted. The molecular 

weight of the exotoxin A had been determined and appeared as 65.33 

kilodaltons after being compared with standard proteins. The highest 

concentration of exotoxin A was 400 µg/mL. The results showed that when 

exotoxin A, which was partially purified, was tested on the MCF-7 cell line 

for 72 hours at 37°C, it significantly stopped protein production by affecting 

elongation factor 2 through the action of ADP-ribosyl transferase, but it did 

not have a noticeable effect on normal human dermal fibroblasts-neonatal 

(HDFn). 
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bacterial extracellular space (Badr et al., 2008; Fito-

Boncompte et al., 2011). It causes inhibition of 

elongation factor-2 by ADP-ribosylation of EF-2 using 

NAD+, which results in cessation of polypeptide 

elongation; moreover, failure of protein synthesis almost 

always occurs, and eventually, cell death happens (Yates 

& Merrill, 2004). 

Systems of secretion are classified into six types, 

including multi-toxin components type III secretion 

system (T3SS), pili (T4SS), and flagella (T6SS-

associated), which function in host colonization, 

adhesion, swimming, and swarming. Ultimately, Pel, Psl, 

and alginate, which are exopolysaccharides, may enhance 

biofilm formation, whereas clearance of bacteria can be 

impaired (Ozer et al., 2021; Filloux, 2011). 

Regulation between the host and bacterial responses 

is indicated to be attributable to T3SS and T6SS, 

including colonization, biofilm formation, apoptosis of 

host cells, inflammatory response, bacterial 

competition/interaction, and motility (Horna & Ruiz, 

2021; Sana et al., 2016). 

The goal of the current project is to appraise the 

cytotoxicity of partially purified Exotoxin A produced 

from P. aeruginosa against MCF-7 cancer cell lines. 

 

Materials and Methods 

 

Isolation and Identification of P. aeruginosa 

Different samples, including those from urinary tract 

infections (UTI), wound, burn, and otitis media infections, 

were obtained from patients visiting hospitals and 

suffering from these infections. Traditional biochemical 

and morphological tests were performed to identify 

bacterial isolates. They were cultured on MacConkey, 

Blood, and Cetrimide agar (HiMedia). An optical 

microscope was used to examine morphological shape, 

size, and arrangement. Confirmation of the suspected 

isolates was achieved by utilizing the VITEK® 2 

Compact system (bioMérieux, France). 

 

Exotoxin A detection 

An ELISA kit (BioTek Instruments, Inc.; serial no. 

130131A) was used to investigate the production of 

Exotoxin A by the tested isolates. 

 

Exotoxin A partial purification 

The procedure performed in the current study was 

according to Whitaker and Bernhard (1972) (Whitaker & 

Bernhard, 1972). Different percentages (20, 30, 40, 50, 

60, 70, 80, 90%) saturation of ammonium sulfate 

((NH4)2SO4) were added to precipitate the toxin. 

Centrifugation was performed for 30 min at 10,000 rpm 

to separate the precipitate. 

Ion exchange chromatography purification 

The purification was carried out following the 

procedure described by Bradford (1976) (Bradford, 

1976). A DEAE-cellulose column (2.5 x 13 cm) was used 

and washed several times with 0.01 M Tris-HCl buffer, 

pH 8, which acted as the equilibration buffer. 

Determination of the molecular weight of exotoxin A 

Gel filtration chromatography was applied to 

determine the molecular weight of the partially purified 

Exotoxin A produced by P. aeruginosa isolates. The 

toxin continuously flowed through a glass column (1.5 x 

55 cm) filled with Sepharose 6B, eluted at a flow rate of 

2 ml per fraction. Standard proteins used in this study 

included bovine serum albumin (BSA, 67 kDa), trypsin 

(23 kDa), and ovalbumin (43 kDa). 

Estimation of Exotoxin A concentration 

A Bovine Serum Albumin (BSA) standard curve was 

constructed by using various concentrations of BSA stock 

solution. This test was performed following the 

procedure described by Merghoub et al. (2009), where an 

ELISA kit was utilized (Merghoub et al., 2009). 

 

Cell lines cultivation 

Two distinct cell lines were employed in the current 

study: breast cancer (MCF-7) and normal human dermal 

fibroblast (HDFn). These cells were cultured in PRMI-

1640 medium supplemented with 10% fetal bovine serum 

and 1% antibiotics (Nystatin, Benzyl Penicillin, and 

Streptomycin). The culture was placed in tissue culture 

flasks and incubated at 37°C with 5% CO₂ until a 

monolayer was formed. The trypan blue exclusion 

method was used to determine cell densities. Cells were 

counted until reaching a final concentration of 1 × 10⁴ 

viable cells/ml. 

Cytotoxicity Assay 

Cell suspension was added to a 96-well microtiter 

plate at a density of 1 × 10⁴ cells/ml. The final volume of 

complete culture media in each well was 200 µl. Plates 

were gently shaken, mixed, and incubated in a 5% CO₂ 

incubator at 37°C for 24 hours after being covered with 

sterile parafilm. After incubation periods of 24, 48, and 

72 hours, plates were checked for formation of a 

confluent monolayer and contamination. The medium 

was then removed, and 200 µl of partially purified 

Exotoxin A at different concentrations (400, 200, 100, 

50, 25 µg/ml) was added to the wells. Each concentration 

and the control group were tested in triplicate. Plates 

were incubated at 37°C with 5% CO₂ for 24 hours. 

Following exposure to Exotoxin A, 20 µl of MTT 
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solution was added to each well. Plates were then 

incubated for 4 hours at 37°C in 5% CO₂. Subsequently, 

the medium was carefully removed, and 200 µl of DMSO 

(solubilization solution) was added to each well and 

incubated for 5 minutes. Absorbance was measured at 

570 nm using an ELISA reader. IC₅₀ values were 

calculated based on optical density measurements 

according to the following equation: 

(%) Viability = (OD₆₀₀ test / OD₆₀₀ blank) × 100 

(Chotirmall et al., 2012; Al-Rawi et al., 1986). 

Results and Discussion 

 

Current results showed that out of sixty-nine different 

clinical samples, including urinary tract infection (UTI), 

otitis media, wounds, and burn infections, fifty samples 

showed bacterial growth, while the remaining were 

negative for bacterial growth. Only thirty-one (62%) 

isolates belonged to P. aeruginosa, whereas the 

remaining isolates were thought to be related to other 

bacteria. Figure 1 illustrates the percentage of P. 

aeruginosa in different clinical samples. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. The percentage of P. aeruginosa in different 

clinical samples 

 

These results differ from a recent study which 

reported a 19.3% prevalence of P. aeruginosa from 

wound, burn, otitis media, and UTI samples 

(Asamenew, 2023), and another study that revealed P. 

aeruginosa represented only 6.48% of isolates 

(Maharjan, 2022). Great concern has been raised 

regarding this bacterium due to its substantial repertoire 

of virulence factors, as well as its resistance to a wide 

range of antibiotics, which can result in a high mortality 

rate (Foulkes et al., 2022; Vidaillac & Chotirmall, 

2021). 

In a local study, it was found that 80% of P. 

aeruginosa isolates showed high ciprofloxacin 

resistance, whereas 100% were sensitive to imipenem 

(Yaseen and Ahmed, personal communication, 2023). 

Present results showed that burn infections had the 

highest bacterial colonization, followed by wounds, 

otitis media, and UTI infections, respectively. This 

finding agrees with Ali and Assafi (2024), who found 

that the highest rates of burn infections by P. aeruginosa 

reached 32.7% (Ali & Assafi, 2024). 

Patients with burns are thought to be highly 

susceptible to nosocomial infections due to 

compromised immunity and the nature of their injuries 

(Risan et al., 2020). A wound is a break in the integrity 

of the skin’s epithelium and can cause further 

disruptions to the skin’s function, anatomy, and 

physiology (Che Soh et al., 2020). Figure 2 illustrates 

the prevalence of P. aeruginosa among a variety of 

clinical samples. 

 

Fig 2. Prevalence of P. aeruginosa among various 

clinical samples. 

 

Pathogenic bacteria such as P. aeruginosa can 

delay the proliferative phase of wound repair by 

secreting proteins that impair or delay healing (Prasad et 

al., 2020). P. aeruginosa appeared colorless when 

cultured on MacConkey agar due to its inability to 

ferment lactose. Additionally, Cetrimide agar was used 

to inhibit bacteria other than P. aeruginosa (Vermelho 

et al., 1996). 

Various isolates were identified phenotypically 

based on colony morphology, pigment production, and 

biochemical tests such as nitrate reduction, sugar 

fermentation, oxidase test, catalase test, citrate 

utilization, motility, glucose oxidative-fermentative test, 

decarboxylase tests, and hemolysin production. These 

tests were performed according to standard protocols 

(CLSI, 2015; Koneman et al., 2006). The isolates 

showed β-hemolytic activity and were positive for 

oxidase, catalase, and citrate utilization tests, while 

negative for indole production and methyl red-Voges 

Proskauer tests. 
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Cultured colonies on nutrient agar at 42°C for 24 

hours showed normal bacterial growth, considered a 

positive result. All bacterial isolates were protease 

positive, in agreement with Galdino et al. (2017), who 

reported that all 96 P. aeruginosa isolates were protease 

producers (Galdino et al., 2017). Pyocyanin production 

was tested on Cetrimide agar, which also serves as 

selective media for P. aeruginosa due to its cationic 

detergent action. This effect causes liberation of 

phosphorus and nitrogen that denatures the membrane 

proteins of bacteria other than P. aeruginosa (Vermelho, 

1996). 

 

Exotoxin A detection and concentration 

Current results revealed that out of thirty-one P. 

aeruginosa isolates, only twenty-one were able to produce 

Exotoxin A. One isolate (P29) was selected based on its 

highest productivity of this toxin, reaching 29.24 ng/ml, 

and was associated with burn infections. This may be 

explained by the fact that isolates from burn infections 

may exhibit more virulence factors than those from other 

infections, hence the highest toxin production was 

observed in the burn infection isolate. Figure 3 represents 

Exotoxin A concentrations from different clinical sources. 

 

 
 

Fig 3. Exotoxin A concentrations detected in 

Pseudomonas aeruginosa isolates from different 

clinical sources. 

 

Purification of Exotoxin A 

Protein Precipitation by Ammonium Sulfate (NH4)2SO4) 

To precipitate the crude toxin extract and remove 

water molecules, ammonium sulfate was used at different 

saturation percentages (20, 30, 40, 50, 60, 70, and 80%). 

Results showed that 80% saturation was optimal for 

precipitating Exotoxin A. Previous studies found that 

ammonium sulfate reduces protein solubility, resulting in 

precipitation due to salt-induced charge neutralization at 

the protein surface and disruption of the water layer 

surrounding the protein (Prinsloo et al., 2013; Pollack & 

Taylor, 1977). 

 

Ion-Exchange chromatography for partial purification 

of Exotoxin A 

Ion-exchange chromatography using DEAE-cellulose 

was employed for partial purification of Exotoxin A. As 

illustrated in Figure 4, Exotoxin A was detected during 

washing steps, and elution of fractions was observed. 

Although two peaks were identified, only one peak was 

observed for the elution of the P29 isolate, showing 

activity consistent with that measured by the ELISA kit. 

The partially purified protein concentration from P29 

reached 29.24 ng/ml. These findings indicate that one 

peak after elution with gradient NaCl concentrations 

corresponds to purified Exotoxin A, with no other 

proteins separated. 

 

Fig 4. Ion-exchange chromatography profile showing the 

partial purification of Exotoxin A. 

 

Exotoxin A molecular weight 

The molecular weight of Exotoxin A was 

determined using Sepharose 6B gel filtration 

chromatography in the presence of trypsin, ovalbumin, 

and BSA as standard proteins. Each standard protein 

was separately eluted with Exotoxin A. The elution 

volume (Ve) was measured and reported as Ve/Vo. 

These results indicated that the molecular weight of 

Exotoxin A is approximately 65.33 kDa, as illustrated in 

Figure 5. 

Exotoxin A cytotoxicity on MCF-7 cel line 

The present results indicated that the viability of 

MCF-7 cells declined upon treatment. The highest 

concentration tested (400 µg/mL) caused the greatest 

inhibition of MCF-7 cells after 72 hours of incubation. 

This may be due to the incubation temperature influencing 

toxin A effector synthesis, with the greatest effector 

protein production occurring at 37°C (Saelinger et al., 

1985). Another explanation is that gene induction 
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encoding the type III secretion system (TTSS) occurs at 

this temperature (Engel & Balachandran, 2009). 

Fig 5. Determination of Exotoxin A molecular weight 

using gel filtration chromatography alongside 

standard proteins—trypsin (23 kDa), ovalbumin 

(43 kDa), and BSA (67 kDa). 

 

This result aligns with a study reporting that purified 

Exotoxin A inhibits REF cell lines in a dose- and time-

dependent manner, although inhibition of RD cell lines by 

Exotoxin A was time-independent (Saleh et al., 2013). 

The highest cytotoxic effect against MCF-7 cells was 

68.3%, whereas the effect on normal human dermal 

fibroblast (HDFn) cells was low, with viability around 

92%. This difference is likely due to apoptosis regulation 

mechanisms in cancer cells leading to cell death. 

Additionally, this damage may be linked to cytokine 

production, which acts as anti-inflammatory molecules 

and promotes phagocytosis (Prinsloo et al., 2013). 

There is believed to be a strong correlation between 

the adherence and cytotoxicity of P. aeruginosa (Idziorok 

et al., 1990). Moreover, the contact-dependent type III 

secretion system (TTSS) depends on the number of 

bacteria adhering to eukaryotic cells, which correlates 

with the amount of translocated Exotoxin A effector 

(Beaumelle et al., 2001). Previous studies demonstrated 

that Exotoxin A biologically reduces proliferation of 

cancer cells (Nichenametla et al., 2006). 

A local study found that isolates competent in 

Exotoxin A production showed inhibition ratios of 61.6% 

and 69.1% against PC3 and HeLa cancer cell lines, 

respectively, at the highest toxin concentration (Hassan, 

personal communication, 2021). However, the current 

results disagree with Kawakami et al. (2009), who 

reported that even low Exotoxin A concentrations (10 

ng/ml) caused potent cytotoxicity in many cancer cell 

lines (Kawakami et al., 2009). 

From these findings, it is clear that Exotoxin A has 

high cytotoxicity against MCF-7 cells, inhibiting cell 

proliferation and causing cell death. 
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